Better Algorithms for High-dimensional Proximity Problems via Asymmetri Embeddings

نویسنده

  • Piotr Indyk
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Streaming algorithms for proximity problems in high dimensions

In this project, we study proximity problems in high dimensional space. We give efficient algorithms in the data stream model that compute an approximation of the Minimum Enclosing Ball and diameter of a point set. We also give a simple insertion only data sructure that answers approximate farthest point queries.

متن کامل

Fast Label Embeddings via Randomized Linear Algebra

Many modern multiclass and multilabel problems are characterized by increasingly large output spaces. For these problems, label embeddings have been shown to be a useful primitive that can improve computational and statistical efficiency. In this work we utilize a correspondence between rank constrained estimation and low dimensional label embeddings that uncovers a fast label embedding algorit...

متن کامل

Estimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study

One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...

متن کامل

Derivative-Free Optimization of High-Dimensional Non-Convex Functions by Sequential Random Embeddings

Derivative-free optimization methods are suitable for sophisticated optimization problems, while are hard to scale to high dimensionality (e.g., larger than 1,000). Previously, the random embedding technique has been shown successful for solving high-dimensional problems with low effective dimensions. However, it is unrealistic to assume a low effective dimension in many applications. This pape...

متن کامل

Proximity-based Graph Embeddings for Multi-label Classification

In many real applications of text mining, information retrieval and natural language processing, large-scale features are frequently used, which often make the employed machine learning algorithms intractable, leading to the well-known problem “curse of dimensionality”. Aiming at not only removing the redundant information from the original features but also improving their discriminating abili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008