Better Algorithms for High-dimensional Proximity Problems via Asymmetri Embeddings
نویسنده
چکیده
منابع مشابه
Streaming algorithms for proximity problems in high dimensions
In this project, we study proximity problems in high dimensional space. We give efficient algorithms in the data stream model that compute an approximation of the Minimum Enclosing Ball and diameter of a point set. We also give a simple insertion only data sructure that answers approximate farthest point queries.
متن کاملFast Label Embeddings via Randomized Linear Algebra
Many modern multiclass and multilabel problems are characterized by increasingly large output spaces. For these problems, label embeddings have been shown to be a useful primitive that can improve computational and statistical efficiency. In this work we utilize a correspondence between rank constrained estimation and low dimensional label embeddings that uncovers a fast label embedding algorit...
متن کاملEstimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study
One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...
متن کاملDerivative-Free Optimization of High-Dimensional Non-Convex Functions by Sequential Random Embeddings
Derivative-free optimization methods are suitable for sophisticated optimization problems, while are hard to scale to high dimensionality (e.g., larger than 1,000). Previously, the random embedding technique has been shown successful for solving high-dimensional problems with low effective dimensions. However, it is unrealistic to assume a low effective dimension in many applications. This pape...
متن کاملProximity-based Graph Embeddings for Multi-label Classification
In many real applications of text mining, information retrieval and natural language processing, large-scale features are frequently used, which often make the employed machine learning algorithms intractable, leading to the well-known problem “curse of dimensionality”. Aiming at not only removing the redundant information from the original features but also improving their discriminating abili...
متن کامل